Hypotheses testing as a fuzzy set estimation problem
نویسندگان
چکیده
For many scientific experiments computing a p-value is the standard method for reporting the outcome. It is a simple way of summarizing the information in the data. One theoretical justification for p-values is the Neyman-Pearson theory of hypotheses testing. However the decision making focus of this theory does not correspond well with the desire, in most scientific experiments, for a simple and easily interpretable summary of the data. Fuzzy set theory with its notion of a membership function gives a non-probabilistic way to talk about uncertainty. Here we argue that for some situations where a p-value is computed it may make more sense to formulate the question as one of estimating a membership function of the subset of special parameter points which are of particular interest for the experiment. Choosing the appropriate membership function can be more difficult than specifying the null and alternative hypotheses but the resulting payoff is greater. This is because a membership function can better represent the shades of desirability among the parameter points than the sharp division of the parameter space into the null and alternative hypotheses. This approach yields an estimate which is easy to interpret and more flexible and informative than the cruder p-value. AMS 1991 subject classifications Primary 62F03; secondary 62G05.
منابع مشابه
Fuzzy decision in testing hypotheses by fuzzy data: Two case studies
In testing hypotheses, we may confront with cases where data are recorded as non-precise (fuzzy) rather than crisp. In such situations, the classical methods of testing hypotheses are not capable and need to be generalized. In solving the problem of testing hypotheses based on fuzzy data, the fuzziness of the observed data leads to the fuzzy p-value. This paper has been focused to calculate fuz...
متن کاملOPTIMAL STATISTICAL TESTS BASED ON FUZZY RANDOM VARIABLES
A novel approach is proposed for the problem of testing statistical hypotheses about the fuzzy mean of a fuzzy random variable.The concept of the (uniformly) most powerful test is extended to the (uniformly) most powerful fuzzy-valued test in which the test function is a fuzzy set representing the degrees of rejection and acceptance of the hypothesis of interest.For this purpose, the concepts o...
متن کاملTesting fuzzy hypotheses with vague data
The problem of testing fuzzy hypotheses in the presence of vague data is considered. A new method based on the necessity index of strict dominance (NSD) is suggested. An example hoe to apply the proposed test in statistical quality control is shown.
متن کاملTESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کاملLINEAR HYPOTHESIS TESTING USING DLR METRIC
Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...
متن کامل